标签归档:linux

RSS feed of linux

最后更新于 .

最近项目小组在去除代码中的warning,在修正代码的过程中看到了对结构体不正确的初始化方式:
假设有一个如下的struct定义:

struct astruct
{
    int a;
    int b;
};
struct astruct test = {0};

即使astruct中都是基础类型的成员这样的初始化话也是不正确的。
这种初始化仅仅是把a变量设置为了0,而未对b变量做初始化。
产生这样错误的原因,大概是收到数组初始化的影响。数组是可以这么初始化话的,而且初始化的值只能是0!
对结构体的初始化,可以有一下三种。

struct test
{
    int a;
    int b;
};
int main()
{
    struct test t1 = {0, 0}; 
    struct test t2 = { 
        .a=2, 
        .b=3
    };  
    struct test t3 = { 
        a:12345,
        b:567890
    };  
    printf("t1.a = %d, t1.b ...

最后更新于 .

Linux进程管理命令详解(ps和top)
1.ps命令
作用:ps命令主要查看系统中进程的状态。
格式:ps [选项]
主要选项如下。

-A:显示系统中所有进程的信息。
-e:显示所有进程的信息。
-f:显示进程的所有信息。
-l:以长格式显示进程信息。
-r:只显示正在运行的进程。
-u:显示面向用户的格式(包括用户名、CPU及内存使用情况等信息)。
-x:显示所有非控制终端上的进程信息。
-p:显示由进程ID指定的进程的信息。
-t:显示指定终端上的进程的信息。

说明:要对进程进行监测和控制,首先要了解当前进程的情况,也就是需要查看当前进程。ps命令就是最基本、也是非常强大的进程查看命令。根据显示的信息可以确定哪个进程正在运行、哪个进程被挂起、进程已运行了多久、进程正在使用的资源、进程的相对优先级,以及进程的标志号(PID)。所有这些信息对用户都很有用,对于系统管理员来说更为重要。使用”ps -aux”命令可以获得终端上所有用户的有关进程的所有信息,下面结合图讲解进程的基本信息。

130727331

图中第二行代码中,USER表示启动进程用户。PID表示进程标志号。%CPU表示运行该进程占用CPU的时间与该进程总的运行时间的比例。%MEM表示该进程占用内存和总内存的比例。VSZ表示占用的虚拟内存大小,以KB为单位 ...

最后更新于 .

查看错误代码errno是调试程序的一个重要方法。当linuc C api函数发生异常时,一般会将errno变量(需include errno.h)赋一个整数值, 不同的值表示不同的含义,可以通过查看该值推测出错的原因。在实际编程中用这一招解决了不少原本看来莫名其妙的问题。比较麻烦的是每次都要去linux源代码里面查找错误代码的含义,现在把它贴出来,以后需要查时就来这里看了。
以下来自linux 的内核代码中的/usr/include/asm/errno.h


#ifndef _I386_ERRNO_H
#define _I386_ERRNO_H
#define EPERM 1 /* Operation not permitted */
#define ENOENT 2 /* No such file or directory */
#define ESRCH 3 /* No such process */
#define EINTR 4 /* Interrupted system call */
#define EIO 5 ...

最后更新于 .

STL比较出名的有如下三个:

一个是SGI STL。STL之父离开HP之后就去了SGI(当然不是去搞侏罗纪公园),然后和Matt Austern这些STL大牛一起搞了SGI STL。SGI STL技术比较新,很规范(但是代码读起来未必好懂) 像concept checking这些技术用的不少,boost graph library的想法也是在这其中产生的。后来有人觉得sgi stl很好,兼容性不够(其实现在已经很不错了),就弄了个stlport项目,顺便提供咨询服务赚点小钱。

一个是RougeWave STL,是Borland C++ Builder 5.0及以前版本采用的STL实现(6.0以后改用stlport)。RougeWave公司在C++程序库领域应该说是鼎鼎大名,在C++标准化过程中出力甚多(比如IOStream)。不过这个STL版本似乎老了点,更新不太勤快,关键是贵(RougeWave 的东西一向如此),所以被Borland一脚踢了。

一个是Visual C++里的STL,作者P.J. Plauger,所以一般也说pj stl。其实这份STL是他公司的产品(他这个公司一共也就3个人,所以人均GDP一定很高),不过他跟MS的关系实在是好得有点古怪 ...

最后更新于 .

调用:

strace [ -dffhiqrtttTvxx ] [ -acolumn ] [ -eexpr ] ...
[ -ofile ] [ -ppid ] ... [ -sstrsize ] [ -uusername ] [ command [ arg ... ] ]
strace -c [ -eexpr ] ... [ -Ooverhead ] [ -Ssortby ] [ command [ arg ... ] ]

功能:

跟踪程式执行时的系统调用和所接收的信号.通常的用法是strace执行一直到commande结束. 并且将所调用的系统调用的名称、参数和返回值输出到标准输出或者输出到-o指定的文件. strace是一个功能强大的调试,分析诊断工具.你将发现他是一个极好的帮手在你要调试一个无法看到源码或者源码无法在编译的程序. 你将轻松的学习到一个软件是如何通过系统调用来实现他的功能的.而且作为一个程序设计师,你可以了解到在用户态和内核态是如何通过系统调用和信号来实现程序的功能的.

strace的每一行输出包括系统调用名称,然后是参数和返回值.这个例子:

    
strace cat /dev/null

他的输出会有:

open("/dev/null",O_RDONLY) = 3

有错误产生时,一般会返回-1.所以会有错误标志和描述:

open("/foor/bar",)_RDONLY) = -1 ENOENT (no such file or ...

最后更新于 .

所有线程都有一个线程号,也就是Thread ID。其类型为pthread_t。通过调用pthread_self()函数可以获得自身的线程号。
下面说一下如何创建一个线程。
通过创建线程,线程将会执行一个线程函数,该线程格式必须按照下面来声明:

void * Thread_Function(void *)

创建线程的函数如下:

int pthread_create(pthread_t *restrict thread,
      const pthread_attr_t *restrict attr,
      void *(*start_routine)(void*), void *restrict arg);

下面说明一下各个参数的含义:

thread:所创建的线程号。
attr:所创建的线程属性,这个将在后面详细说明。
start_routine:即将运行的线程函数。
art:传递给线程函数的参数。


下面是一个简单的创建线程例子:

#include <pthread.h>
#include <stdio.h>
/* Prints x’s to stderr. The parameter is unused ...

最后更新于 .

    今年的linux内核开发大会上,google的开发人员也上台做了名为“how google use linux"的演讲。我斗胆翻译注解一番——括号内为注解,欢迎读者斧正。
    原文链接参见:http://lwn.net/Articles/357658/

    (前面几段讲google对linux kernel代码的管理及跟进,偏细碎,不翻译了)
    在google为linux加入的代码中,3/4是对内核核心的改动,设备驱动代码只是其中相对较小的一部分。
    (linux发展到现在这个阶段,需要加入的新的设备驱动已经越来越少了)

    如果google要与linux社区的合作开发,那将面临一系列问题。跟上linux代码的主干太难——它的代码更新的太快了。在一个大型项目里,开发者对补丁的提交、重改确实是个问题。Alan Cox对此的回答十分简单:人总是贪得无厌的,但有时候就应该简单的对他们说”不“。
    (Alan Cox是linux kernel的二号功臣,现已加入Intel公司。我觉得Intel这样的CPU公司很适合内核开发者)

    在CPU调度上,google发现想改用新的cfs(“完全公平调度”,由Con Kolivasy在2.6.23中加入内核)非常麻烦。由于太麻烦,google不得不倒回去把O(1) sheduler ...

最后更新于 .

C++的string提供了replace方法来实现字符串的替换,但是对于将字符串中某个字符串全部替换这个功能,string并没有实现,我们今天来做的就是这件事。
首先明白一个概念,即string替换所有字符串,将”12212″这个字符串的所有”12″都替换成”21″,结果是什么?
可以是22211,也可以是21221,有时候应用的场景不同,就会希望得到不同的结果,所以这两种答案都做了实现,代码如下:

#include   <string>   
#include   <iostream>   
using   namespace   std;   
string&   replace_all(string&   str,const   string&   old_value,const   string&   new_value)   
{   
    while(true)   {   
        string::size_type   pos(0);   
        if(   (pos=str.find(old_value))!=string::npos   )   
            str.replace(pos,old_value.length(),new_value);   
        else   break;   
    }   
    return   str ...

最后更新于 .

互斥锁

尽管在Posix Thread中同样可以使用IPC的信号量机制来实现互斥锁mutex功能,但显然semphore的功能过于强大了,在Posix Thread中定义了另外一套专门用于线程同步的mutex函数。

1. 创建和销毁

有两种方法创建互斥锁,静态方式和动态方式。POSIX定义了一个宏PTHREAD_MUTEX_INITIALIZER来静态初始化互斥锁,方法如下:

pthread_mutex_t mutex=PTHREAD_MUTEX_INITIALIZER;

在LinuxThreads实现中,pthread_mutex_t是一个结构,而PTHREAD_MUTEX_INITIALIZER则是一个结构常量。 动态方式是采用pthread_mutex_init()函数来初始化互斥锁,API定义如下:

int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *mutexattr)

其中mutexattr用于指定互斥锁属性,如果为NULL则使用缺省属性。 pthread_mutex_destroy()用于注销一个互斥锁,API定义如下:

int pthread_mutex_destroy(pthread_mutex_t *mutex)

销毁一个互斥锁即意味着释放它所占用的资源,且要求锁当前处于开放状态。由于在Linux中,互斥锁并不占用任何资源,因此LinuxThreads中的pthread_mutex_destroy()除了检查锁状态以外(锁定状态则返回EBUSY)没有其他动作。

2. 互斥锁属性

互斥锁的属性在创建锁的时候指定,在LinuxThreads实现中仅有一个锁类型属性,不同的锁类型在试图对一个已经被锁定的互斥锁加锁时表现不同。当前(glibc2.2.3,linuxthreads0 ...

最后更新于 .

在代码编写中,我们经常需要用到int或者long等类型转化成特殊进制的字符串的问题,当然C里面提供了一些转义符来提供特殊进制输出,如%02x是输出16进制(只是针对一个char,08x是一个int),但是还是需要一个通用的函数来实现一个完整的功能比较好。

例如:转化成2进制

实际上就是每次右移一位,如果8进制就右移3位,16进制就右移4位,当然,mask也要对应更改。


//最左边是第一位
string ChangeTo2Left(unsigned long long flag)
{
string str="";
char temp[2];
unsigned long long mask = 1;
int tempFlag=0;
for(int i=0;i<64;++i)
{
tempFlag=(flag>>i) & mask;
snprintf(temp,sizeof(temp),"%d",tempFlag);
str.append(temp);
}
return str ...